Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002192" target="_blank" >RIV/00025615:_____/15:#0002192 - isvavai.cz</a>
Result on the web
<a href="http://leibnizsozietaet.de/wp-content/uploads/2015/02/10-Petr-Holota-final.pdf" target="_blank" >http://leibnizsozietaet.de/wp-content/uploads/2015/02/10-Petr-Holota-final.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy
Original language description
The paper primarily concerns physical geodesy applications and thus problems associated with Laplace?s and Poisson?s partial differential equation that offer a natural basis for gravity field studies. In the introduction a brief review is given on Green?s function constructed for Stokes? and Neumann?s problem formulated for the exterior of a sphere. The second of the problems is considered also within the weak solution concept. Galerkin elements are ex-pressed for the special case when the function basis is generated by the respective reproduc-ing kernel or represented by reciprocal distances (elementary potentials). The solution do-main is then generalized and the paper focuses on the construction of the reproducing kernel of Hilbert?s space of functions harmonic in the exterior of an oblate ellipsoid of revolution. In the first stage the kernel is represented by a series of ellipsoidal harmonics. However, the manipulation with the series and a numerical implementation of the integral
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-34595S" target="_blank" >GA14-34595S: Mathematical methods for Earth’s gravity field studies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Berlin
Publisher/client name
Leibniz Society of Science at Berlin
Version
—
Carrier ID
—