Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F19%3A10394261" target="_blank" >RIV/00064203:_____/19:10394261 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11130/19:10394261
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sBx-Isz2qs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sBx-Isz2qs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41588-019-0364-4" target="_blank" >10.1038/s41588-019-0364-4</a>
Alternative languages
Result language
angličtina
Original language name
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
Original language description
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10600 - Biological sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Genetics
ISSN
1061-4036
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
659-674
UT code for WoS article
000462767500013
EID of the result in the Scopus database
2-s2.0-85063585118