All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

HUMAN STEM CELL-DERIVED TISSUE ORGANOIDS AS A POTENTIAL TOOL FOR DRUG DELIVERY TESTING

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F18%3A00070386" target="_blank" >RIV/00159816:_____/18:00070386 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    HUMAN STEM CELL-DERIVED TISSUE ORGANOIDS AS A POTENTIAL TOOL FOR DRUG DELIVERY TESTING

  • Original language description

    Advancement in organoid cultures from human pluripotent stem cells allows studying complexity of tissue specific interactions in vitro. This organ in a chip approach provides an important tool for translational research. Successful development of nanoparticles and nanostructures for clinical use has increased the need for more reliable and high-throughput experimental models beyond conventional cell culture. Human induced pluripotent stem cells (iPSCs) can be differentiated to multiple cell types including tissue-like organoids. Here, we study the interaction of nanoparticles with differentiated tissue cells and analyse their effects on various organoids in vitro. Human tissue organoids are differentiated from iPSCs by growth factor and by manipulation of various developmental signal pathways with inhibitors. The 3-dimentional structures of the bodies, with structural features similar to the appropriate human organ/tissue are obtained by embedding in a matrix. In order to test organoid as a model for interaction with nanoparticles, the organoids are injected with nano-sized particulate triggers such as glucans. The various tissue models are compared for their nanoparticle-induced stimulation by screening for inflammatory cytokines. Described model will allow studying human tissue interaction with nanoparticles, which for example are used in drug delivery.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)

Result continuities

  • Project

    <a href="/en/project/LQ1605" target="_blank" >LQ1605: Translational Medicine</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH &amp; APPLICATION (NANOCON 2017)

  • ISBN

    978-80-87294-81-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    4

  • Pages from-to

    589-592

  • Publisher name

    TANGER LTD

  • Place of publication

    SLEZSKA

  • Event location

    Brno

  • Event date

    Oct 18, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000452823300097