HUMAN STEM CELL-DERIVED TISSUE ORGANOIDS AS A POTENTIAL TOOL FOR DRUG DELIVERY TESTING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F18%3A00070386" target="_blank" >RIV/00159816:_____/18:00070386 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
HUMAN STEM CELL-DERIVED TISSUE ORGANOIDS AS A POTENTIAL TOOL FOR DRUG DELIVERY TESTING
Original language description
Advancement in organoid cultures from human pluripotent stem cells allows studying complexity of tissue specific interactions in vitro. This organ in a chip approach provides an important tool for translational research. Successful development of nanoparticles and nanostructures for clinical use has increased the need for more reliable and high-throughput experimental models beyond conventional cell culture. Human induced pluripotent stem cells (iPSCs) can be differentiated to multiple cell types including tissue-like organoids. Here, we study the interaction of nanoparticles with differentiated tissue cells and analyse their effects on various organoids in vitro. Human tissue organoids are differentiated from iPSCs by growth factor and by manipulation of various developmental signal pathways with inhibitors. The 3-dimentional structures of the bodies, with structural features similar to the appropriate human organ/tissue are obtained by embedding in a matrix. In order to test organoid as a model for interaction with nanoparticles, the organoids are injected with nano-sized particulate triggers such as glucans. The various tissue models are compared for their nanoparticle-induced stimulation by screening for inflammatory cytokines. Described model will allow studying human tissue interaction with nanoparticles, which for example are used in drug delivery.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Result continuities
Project
<a href="/en/project/LQ1605" target="_blank" >LQ1605: Translational Medicine</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2017)
ISBN
978-80-87294-81-9
ISSN
—
e-ISSN
neuvedeno
Number of pages
4
Pages from-to
589-592
Publisher name
TANGER LTD
Place of publication
SLEZSKA
Event location
Brno
Event date
Oct 18, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000452823300097