Pulse-width modulated temporal interference (PWM-TI) brain stimulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081794" target="_blank" >RIV/00159816:_____/24:00081794 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1935861X23019757" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1935861X23019757</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.brs.2023.12.010" target="_blank" >10.1016/j.brs.2023.12.010</a>
Alternative languages
Result language
angličtina
Original language name
Pulse-width modulated temporal interference (PWM-TI) brain stimulation
Original language description
Background: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. Objective: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). Methods/Results: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitudemodulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. Conclusions: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30210 - Clinical neurology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Brain Stimulation
ISSN
1935-861X
e-ISSN
1876-4754
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
92-103
UT code for WoS article
001165185900001
EID of the result in the Scopus database
—