Advanced mathematical and statistical methods in evaluating instrumented indentation measurements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F21%3AN0000017" target="_blank" >RIV/00177016:_____/21:N0000017 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/21:00120017
Result on the web
<a href="http://nanometrologie.cz/niget/TJ02000203-V2.pdf" target="_blank" >http://nanometrologie.cz/niget/TJ02000203-V2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Advanced mathematical and statistical methods in evaluating instrumented indentation measurements
Original language description
This publicly available research report provides a detailed overview of the results achieved within the TACR project TJ02000203 "Advanced mathematical and statistical methods in evaluating instrumented indentation measurements" (result TJ02000203-V2). The introductory section contains necessary background on instrumented indentation data evaluation procedures using the method due to Oliver and Pharr, as described in ISO 14577 standard. The next section provides detailed derivation of a novel algorithm "OEFPIL" for nonlinear data regression with errors in both variables, as well as guidelines for efficient implementation of the algorithm. The algorithm calculates both the optimum estimate of function parameters and an estimate of the parameter covariance matrix. The algorithm performance is demonstrated on reference data for nonlinear regression, and validated by comparison to another method. In this section some existing advanced methods for uncertainty propagation (higher-order uncertainty propagation, Latin hypercube sampling for Monte Carlo) are also discussed. The last section presents application of the aforementioned methods for data regression and uncertainty propagation in processing data from instrumented indentation measurements. These methods have been newly added to the the free software tool Niget to improve data fitting of the unloading curve and to provide capability for indenter contact area function calibration. Combination of the regression and uncertainty propagation methods enables a better insight into evaluation of indentation data and provides basis for e.g. identifying main sources of measurement uncertainty or designing measurement strategy. Although the methods were designed and assessed with Oliver and Pharr's evaluation method in mind, they can be easily adapted to other evaluation models, too. All software developed and used in this project is freely available.
Czech name
—
Czech description
—
Classification
Type
V<sub>souhrn</sub> - Summary research report
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/TJ02000203" target="_blank" >TJ02000203: Advanced mathematical and statistical methods in evaluating instrumented indentation measurements</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Number of pages
67
Place of publication
—
Publisher/client name
Technologická agentura České Republiky
Version
—