All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Physiological versus non-physiological cardiac pacing as assessed by Ultra-high-frequency electrocardiography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F21%3A43923021" target="_blank" >RIV/00216208:11120/21:43923021 - isvavai.cz</a>

  • Alternative codes found

    RIV/00064173:_____/21:N0000099

  • Result on the web

    <a href="https://doi.org/10.23919/CinC53138.2021.9662912" target="_blank" >https://doi.org/10.23919/CinC53138.2021.9662912</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/CinC53138.2021.9662912" target="_blank" >10.23919/CinC53138.2021.9662912</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Physiological versus non-physiological cardiac pacing as assessed by Ultra-high-frequency electrocardiography

  • Original language description

    Background: Permanent cardiac pacing can cause heart failure, with the ventricular dyssynchrony being identified as the main cause for its development. Method: His bundle pacing (HBp), left bundle branch pacing (LBBp), and left ventricular myocardial septal pacing (LVSP) were introduced recently. Their impact on ventricular dyssynchrony was not known. We used ultra-high-frequency ECG (UHF-ECG) to compare ventricular depolarization in these pacing techniques. Results: We showed the nonselective HB pacing produces the same pattern of UHF-ECG ventricular depolarization as selective HB pacing. Next, we showed the nonselective His bundle pacing in the area below the tricuspid valve has the best interventricular synchrony from all other RV pacing locations with myocardial capture. We also compared UHF-ECG-derived parameters of ventricular depolarization during HBp, LBBp, and LVSP and we showed that both pacing types from the left septal area are less physiological than nsHBp. Conclusion: UHF-ECG is an effective tool that can be used in clinical practice to assess the electrical dyssynchrony caused by cardiac pacing. Furthermore, its real-time implementation allows recognizing between physiological vs. non-physiological pacing during an implant procedure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    30201 - Cardiac and Cardiovascular systems

Result continuities

  • Project

    <a href="/en/project/NU21-02-00584" target="_blank" >NU21-02-00584: Ultra-high-frequency ECG for prediction of adverse left ventricular remodeling in permanent right ventricular pacing</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computing in Cardiology, Vol. 48

  • ISBN

    978-1-66546-721-6

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1-4

  • Publisher name

    IEEE

  • Place of publication

    New Jersey

  • Event location

    Brno

  • Event date

    Sep 12, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000821955000200