Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F22%3A43922627" target="_blank" >RIV/00216208:11120/22:43922627 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/jas/skab345" target="_blank" >https://doi.org/10.1093/jas/skab345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jas/skab345" target="_blank" >10.1093/jas/skab345</a>
Alternative languages
Result language
angličtina
Original language name
Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells
Original language description
As the main component of the gram-negative bacterial cell wall, lipopolysaccharide (LPS) is well-documented as an inducer of inflammation in bovine mammary cells. Lycium barbarum (goji) polysaccharides (LBP) have been used in non-ruminants as prebiotics to improve growth performance, immune ability and antioxidant capacity. We aimed to investigate the underlying effects of LBPs on pro-inflammatory responses in LPS-stimulated primary bovine mammary epithelial cells (bMECs). Cells were isolated from mammary tissue of 3 lactating Holstein cows without clinical disease (30.26 +- 3.1 kg/d of milk yield; 175 +- 6 DIM). For the pre-experimental treatment, bMECs were precultured with serum-free medium for 12 h. Treatments were as follows: pretreatment with culture medium devoid of LPS or LBP for 30 h (CON); CON for 24 h followed by challenge with 2 μg/mL LPS for 6 h (LPS); pretreatment with 100 μg/mL or 300 μg/mL LBP for 24 h followed by LPS challenge (2 μg/mL) for 6 h (LBP(100)+LPS; LBP(300)+LPS). To further determine if the effect of LBP on immune-regulation is PPARγ activation-dependent, an inhibitor of PPARγ, GW9662, at a concentration of 1 μM was used. Cells treated with LBP at 100, 300 and 500 μg/mL had upregulated protein abundance of PPARγ, while PGC1α had a higher expression only at 300 μg/mL of LBP treatment. Compared with CON, cells pretreated with LBP at 100 and 300 μg/mL had greater protein abundance of SCD1 and SREBP1. EdU staining and cell wound healing assays showed that the negative effect of LPS alone on cell proliferation was reversed by pretreatment with LBP at both 100 and 300 μg/mL. Upregulation of gene and protein abundance of proinflammatory factors and cytokines (COX-2, NLRP3, TNF-α, IL-1β and IL-6) induced by LPS stimulation were alleviated by LBP pretreatment at 300 μg/mL (more than 2-fold decrease). Compared with LPS challenge alone, phosphorylation of proteins involved in NF-κB (IκBα and p65) and MAPK (p38, JNK and ERK) pathways was downregulated following LBP treatment. Additionally, inhibition of PPARγ by GW9662 weakened the protective effect of LBP on LPS-induced protein abundance of phosphorylated p65, COX-2, IL-1β and TNF-α. These results indicated that the protective effect of LBP on LPS-induced bMECs inflammatory responses is PPARγ activation-dependent. As such, this knowledge might help design strategies for intervening against the detrimental effects of bovine mastitis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Animal Science
ISSN
0021-8812
e-ISSN
1525-3163
Volume of the periodical
100
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
"skab345"
UT code for WoS article
000744469900002
EID of the result in the Scopus database
2-s2.0-85123389045