All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose (R) 80, CombiLac (R), MicroceLac (R) 100, and StarLac (R)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F21%3A10434425" target="_blank" >RIV/00216208:11160/21:10434425 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/21:73610447 RIV/00216224:14160/21:00122737

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7qzMM5TeQt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7qzMM5TeQt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pharmaceutics13091486" target="_blank" >10.3390/pharmaceutics13091486</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose (R) 80, CombiLac (R), MicroceLac (R) 100, and StarLac (R)

  • Original language description

    The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs-Cellactose (R) 80, CombiLac (R), MicroceLac (R) 100, and StarLac (R)-were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E-2), ejection force, consolidation behavior, and compact friability. Cellactose (R) 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac (R) showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac (R) 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac (R) showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac (R) 100.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pharmaceutics

  • ISSN

    1999-4923

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    1486

  • UT code for WoS article

    000701444400001

  • EID of the result in the Scopus database

    2-s2.0-85116163555