Multifunctional Poly(2-ethyl-2-oxazoline) Copolymers Containing Dithiolane and Pentafluorophenyl Esters as Effective Reactive Linkers for Gold Surface Coatings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10472981" target="_blank" >RIV/00216208:11310/23:10472981 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H-38--B566" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H-38--B566</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.bioconjchem.3c00444" target="_blank" >10.1021/acs.bioconjchem.3c00444</a>
Alternative languages
Result language
angličtina
Original language name
Multifunctional Poly(2-ethyl-2-oxazoline) Copolymers Containing Dithiolane and Pentafluorophenyl Esters as Effective Reactive Linkers for Gold Surface Coatings
Original language description
Surface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly-(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly-(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly-(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications. The side-chain carboxylic groups were then converted to amine-reactive pentafluorophenyl (PFP) ester groups. Part of the PFP groups was used for the attachment of the dithiolane moiety, which can efficiently bind to gold surfaces. The final copolymer contained 1.4 mol% of dithiolane groups and 4.5 mol% of PFP groups. The copolymer structure was confirmed by several analytical techniques, including NMR spectroscopy and size-exclusion chromatography. The kinetics of the PFP ester aminolysis and hydrolysis demonstrated significantly faster amidation compared to hydrolysis, which is essential for subsequent protein conjugation. Successful coating of gold surfaces with the polymer was confirmed by spectroscopic ellipsometry, showing a polymer brush thickness of 4.77 nm. Subsequent modification of the coated surfaces was achieved using bovine serum albumin as a model protein. This study introduces a novel reactive polymer linker for gold surface functionalization and offers a versatile polymer platform for various applications including biosensing and surface functionalization.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/GA22-02836S" target="_blank" >GA22-02836S: Water-soluble fluorinated polymers for the next-generation antifouling coatings and multimodal in vivo tracing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bioconjugate Chemistry
ISSN
1043-1802
e-ISSN
1520-4812
Volume of the periodical
34
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
2311-2318
UT code for WoS article
001128261600001
EID of the result in the Scopus database
2-s2.0-85180112122