Mappings of finite distortion: Hausdorff measure of zero sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F02%3A00003810" target="_blank" >RIV/00216208:11320/02:00003810 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mappings of finite distortion: Hausdorff measure of zero sets
Original language description
We prove that for a mapping $f$ of finite distortion $Kin L^{p/(n-p)}$, the $(n-p)$-Hausdorff measure of any point preimage is zero provided $J_f$ is integrable, $Dfin L^s$ with $s>p$, and the multiplicity of $f$ is essentially bounded.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0767" target="_blank" >GA201/00/0767: Theory of real functions and distributions</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
—
Volume of the periodical
2002
Issue of the periodical within the volume
324
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
451-464
UT code for WoS article
—
EID of the result in the Scopus database
—