All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gradient ranges of bumps on the plane

Result description

We show that the gradient range of a $C^1$-smooth function $b$ on the plane is regularly closed (i.e., it is the closure of its interior), provided $b$ has non-empty bounded support and the gradient $grad b$ admits a modulus of continuity $omega = omega (t)$ that satisfies $omega (t)/sqrt{t} to 0$ as $t searrow 0$. Furthermore, under the same smoothness hypothesis, we show that the gradient range of a function $b fcolon Rn to R$ with non-empty bounded support has the topological dimension atleast two at points of a dense subset. The proof relies on a new Morse-Sard type result.

Keywords

Gradientrangesbumpsplane

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gradient ranges of bumps on the plane

  • Original language description

    We show that the gradient range of a $C^1$-smooth function $b$ on the plane is regularly closed (i.e., it is the closure of its interior), provided $b$ has non-empty bounded support and the gradient $grad b$ admits a modulus of continuity $omega = omega (t)$ that satisfies $omega (t)/sqrt{t} to 0$ as $t searrow 0$. Furthermore, under the same smoothness hypothesis, we show that the gradient range of a function $b fcolon Rn to R$ with non-empty bounded support has the topological dimension atleast two at points of a dense subset. The proof relies on a new Morse-Sard type result.

  • Czech name

    Obory hodnot gradientů bumpů v rovině

  • Czech description

    Obor hodnot gradientů $C^1$ hladké funkce $b$ v rovině je regulárně uzavřený (tj. je uzávěrem svého vnitřku) za předpokladu, že $b$ má neprázdný omezený nosič a gradient $nabla b$ má modul spojitosti $omega = omega(t)$ který splňuje $omega(t)/sqrt{t} to 0$ pro $tsearrow 0$. Za stejného předpokladu hladkosti má obor hodnot gradientu funkce $b colon Rn to R$ s neprázdným omezeným nosičem topologickou dimenzi alespoň 2 v hustě mnoha bodech. Je dokázána a použita nová věta typu Morse-Sard.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    133

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    1699-1706

  • UT code for WoS article

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2005