Mappings of finite distortion: Discreteness and openness of quasi-light mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206013" target="_blank" >RIV/00216208:11320/05:00206013 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mappings of finite distortion: Discreteness and openness of quasi-light mappings
Original language description
Let $fin W^{1,n}(Omega,rn)$ be a continuous mapping so that the components of the preimage of each $yin rn$ are compact. We show that $f$ is open and discrete if $|Df(x)|^nle K(x)J_f(x)$ a.e where $K(x)ge 1$ and $K^{n-1}/Phi(log(e+K))in L^1(Omega)$ for a function $Phi$ that satisfies $int_1^{infty}1/Phi(t)dt=infty$ and some technical conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l Institut Henri Poincare - Analyse Non Lineaire
ISSN
0294-1449
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
3
Country of publishing house
FR - FRANCE
Number of pages
12
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—