All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mappings of finite distortion: Discreteness and openness of quasi-light mappings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206013" target="_blank" >RIV/00216208:11320/05:00206013 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mappings of finite distortion: Discreteness and openness of quasi-light mappings

  • Original language description

    Let $fin W^{1,n}(Omega,rn)$ be a continuous mapping so that the components of the preimage of each $yin rn$ are compact. We show that $f$ is open and discrete if $|Df(x)|^nle K(x)J_f(x)$ a.e where $K(x)ge 1$ and $K^{n-1}/Phi(log(e+K))in L^1(Omega)$ for a function $Phi$ that satisfies $int_1^{infty}1/Phi(t)dt=infty$ and some technical conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales de l Institut Henri Poincare - Analyse Non Lineaire

  • ISSN

    0294-1449

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database