All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exposed sets in potential theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00002855" target="_blank" >RIV/00216208:11320/06:00002855 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exposed sets in potential theory

  • Original language description

    Let U be a relatively compact open subset of a harmonic space, and H(U) be the function space of all continuous functions on which are harmonic on U. We give a complete characterization of the H(U)-exposed subsets of . This extends the results of [J. Lukeš, T. Mocek, M. Smrčka, J. Spurný, Choquet like sets in function spaces, Bull. Sci. Math. 127 (2003) 397437].

  • Czech name

    Exponované množiny v teorii potenciálu

  • Czech description

    Je podána charakterizace exponovaných množin v klasické teorii potenciálu.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin des Sciences Mathematiques

  • ISSN

    0007-4497

  • e-ISSN

  • Volume of the periodical

    130

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    14

  • Pages from-to

    646-659

  • UT code for WoS article

  • EID of the result in the Scopus database