All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extensions of the linear bound in the Füredi-Hajnal conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004338" target="_blank" >RIV/00216208:11320/07:00004338 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extensions of the linear bound in the Füredi-Hajnal conjecture

  • Original language description

    In 2004 Marcus and Tardos proved that every n by n matrix that has entries 1 and 0 and avoids a fixed permutation matrix as a submatrix, has only O(n) entries 1. We extend this result to higher dimensional matrices and to hypergraphs.

  • Czech name

    Zobecnění lineárního odhadu v domněnce Fürediho a Hajnala

  • Czech description

    V r. 2004 Marcus a Tardos dokázali, že každá čtvercová matice tvaru n krát n s členy 1 a 0, která jako podmatici neobsahuje pevnou permutační matici, má jen O(n) členů rovných 1. Tento výsledek rozšiřujeme na vícerozměrné matice a na hypergrafy.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Applied Mathematics

  • ISSN

    0196-8858

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    258-266

  • UT code for WoS article

  • EID of the result in the Scopus database