A Note on Companion Matrices.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F03%3A06030108" target="_blank" >RIV/67985807:_____/03:06030108 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Note on Companion Matrices.
Original language description
We show that the usual companion matrix of a polynomial of degree n can be factored into a product of n matrices, n-1 of them being the identity matrix in which a 2x2 identity submatrix in two consecutive rows (and columns) is replaced by an appropriate2x2 matrix, the remaining being the identity matrix with the last entry replaced by possibly different entry. By a certain similarity transformation, we obtain a simple new companion matrix in a pentadiagonal form. Some generalizations are also possible.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1030003" target="_blank" >IAA1030003: Polynomial and structured matrices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
372
Issue of the periodical within the volume
N/A
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
325-331
UT code for WoS article
—
EID of the result in the Scopus database
—