Hamiltonian paths with prescribed edges in hypercubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004451" target="_blank" >RIV/00216208:11320/07:00004451 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hamiltonian paths with prescribed edges in hypercubes
Original language description
Given a set P of at most 2n-4 prescribed edges (n>=5) and vertices u and v whose mutual distance is odd, the n-dimensional hypercube contains a hamiltonian path between u and v passing through all edges of P iff the subgraph induced by P consists of pairwise vertex-disjoint paths, none of them having u or v as internal vertices or both of them as endvertices. This resolves a problem of Caha and Koubek.
Czech name
Hamiltonovské cesty s předepsanými hranami v hyperkrychlích
Czech description
V článku je vyřešen problém Cahy a Koubka o existenci hamiltonovské cesty v n-rozměrné hyperkrychli, která spojuje dvojici zadaných vrcholů a prochází předepsanými hranami.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
307
Issue of the periodical within the volume
16
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
1982-1998
UT code for WoS article
—
EID of the result in the Scopus database
—