Min-Sum 2-Paths Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00094246" target="_blank" >RIV/00216224:14330/16:00094246 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00224-014-9569-1" target="_blank" >http://dx.doi.org/10.1007/s00224-014-9569-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-014-9569-1" target="_blank" >10.1007/s00224-014-9569-1</a>
Alternative languages
Result language
angličtina
Original language name
Min-Sum 2-Paths Problems
Original language description
An orientation of an undirected graph G is a directed graph obtained by replacing each edge {u,v} of G by exactly one of the arcs (u,v) or (v,u). In the min-sum k -paths orientation problem, the input is an undirected graph G and ordered pairs (s (i) ,t (i) ), where ia{1,2,aEuro broken vertical bar,k}. The goal is to find an orientation of G that minimizes the sum over all ia{1,2,aEuro broken vertical bar,k} of the distance from s (i) to t (i) . In the min-sum k edge-disjoint paths problem, the input is the same, however the goal is to find for every ia{1,2,aEuro broken vertical bar,k} a path between s (i) and t (i) so that these paths are edge-disjoint and the sum of their lengths is minimum. Note that, for every fixed ka parts per thousand yen2, the question of N P-hardness for the min-sum k-paths orientation problem and for the min-sum k edge-disjoint paths problem has been open for more than two decades. We study the complexity of these problems when k=2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
94-110
UT code for WoS article
000367607000006
EID of the result in the Scopus database
—