All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Min-Sum 2-Paths Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00094246" target="_blank" >RIV/00216224:14330/16:00094246 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00224-014-9569-1" target="_blank" >http://dx.doi.org/10.1007/s00224-014-9569-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00224-014-9569-1" target="_blank" >10.1007/s00224-014-9569-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Min-Sum 2-Paths Problems

  • Original language description

    An orientation of an undirected graph G is a directed graph obtained by replacing each edge {u,v} of G by exactly one of the arcs (u,v) or (v,u). In the min-sum k -paths orientation problem, the input is an undirected graph G and ordered pairs (s (i) ,t (i) ), where ia{1,2,aEuro broken vertical bar,k}. The goal is to find an orientation of G that minimizes the sum over all ia{1,2,aEuro broken vertical bar,k} of the distance from s (i) to t (i) . In the min-sum k edge-disjoint paths problem, the input is the same, however the goal is to find for every ia{1,2,aEuro broken vertical bar,k} a path between s (i) and t (i) so that these paths are edge-disjoint and the sum of their lengths is minimum. Note that, for every fixed ka parts per thousand yen2, the question of N P-hardness for the min-sum k-paths orientation problem and for the min-sum k edge-disjoint paths problem has been open for more than two decades. We study the complexity of these problems when k=2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory of Computing Systems

  • ISSN

    1432-4350

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    94-110

  • UT code for WoS article

    000367607000006

  • EID of the result in the Scopus database