Min-sum 2-paths problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00087424" target="_blank" >RIV/00216224:14330/14:00087424 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-08001-7_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08001-7_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08001-7_1" target="_blank" >10.1007/978-3-319-08001-7_1</a>
Alternative languages
Result language
angličtina
Original language name
Min-sum 2-paths problems
Original language description
An orientation of an undirected graph G is a directed graph obtained by replacing each edge {u,v} of G by exactly one of the arcs (u,v) or (v,u). In the min-sum k-paths orientation problem, the input is an undirected graph G and ordered pairs (s i ,t i ), where i in {1,2,...,k}. The goal is to find an orientation of G that minimizes the sum over every i in {1,2,...,k} of the distance from s i to t i . In the min-sum k edge-disjoint paths problem the input is the same, however the goal is to find for every i in {1,2,...,k} a path between s i and t i so that these paths are edge-disjoint and the sum of their lengths is minimum. Note that, for every fixed k >= 2, the question of NP-hardness for the min-sum k-paths orientation problem and the min-sum kedge-disjoint paths problem have been open for more than two decades. We study the complexity of these problems when k = 2. We exhibit a PTAS for the min-sum 2-paths orientation problem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
11th International Workshop on Approximation and Online Algorithms, WAOA 2013, LNCS 8447
ISBN
9783319080000
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
1-11
Publisher name
Springer
Place of publication
Sophia Antipolis; France
Event location
Sophia Antipolis; France
Event date
Jan 1, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—