All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mappings of finite distortion: composition operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00100043" target="_blank" >RIV/00216208:11320/08:00100043 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mappings of finite distortion: composition operator

  • Original language description

    We give sharp integrability conditions on the distortion function of a homeomorphism $f$ of finite distortion, under which $f$ induces a composition operator between two Sobolev spaces.

  • Czech name

    Zobrazení s konečnou distorzí: Operátor složení

  • Czech description

    V článku jsou nalezeny ostré podmínky na integrovatelnost distorzní funkce homeomorfismu s konečnou distorzí, které zaručí, že příslušný operátor složení je spojitý na Sobolevových prostorech.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F06%2FP100" target="_blank" >GP201/06/P100: Properties of functions and mappings in Sobolev spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales Academiae Scientiarium Fennicae - Mathematica

  • ISSN

    1239-629X

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FI - FINLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000253136600003

  • EID of the result in the Scopus database