Some Parameterized Problems Related to Seidel's Switching
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00206097" target="_blank" >RIV/00216208:11320/08:00206097 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Some Parameterized Problems Related to Seidel's Switching
Original language description
Annotation in the original language is: Seidel's switching of vertex set is an operation, which deletes edges leaving this set from the graph and adds those edges between the set and the rest of the graph, that weren't there originally. Other edges remain untouched by this operation. The usual question in parameterized complexity is whether the exponential part of the algorithms for hard problems can be bounded by some function of only selected parameter, which we assume to be small. We study the complexity of a question, if the given graph can be turned into a graph with some property P using Seidel's switching, from the parameterized view. We show fixed parameter tractability of switching to a regular graph, to a graph with bounded degree of vertices, or with bounded number of edges, a graph without a forbidden subgraph and a bipartite graph.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GD201%2F05%2FH014" target="_blank" >GD201/05/H014: Collegium Informaticum</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Workshop on Combinatorial Algorithms 2007
ISBN
978-1-904987-67-3
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
College Publications
Place of publication
United Kingdom
Event location
United Kingdom
Event date
Jan 1, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—