All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inapproximability for metric embeddings into R^d

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10048584" target="_blank" >RIV/00216208:11320/10:10048584 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inapproximability for metric embeddings into R^d

  • Original language description

    We consider the problem of computing the smallest possible distortion for embedding of a given $n$-point metric space into $R^d$, where $d$is emph{fixed} (and small). For $d=1$, it was known that approximating the minimum distortion with a factor better than roughly $n^{1/12}$ is NP-hard.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BD - Information theory

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    2010

  • Issue of the periodical within the volume

    362

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

  • UT code for WoS article

    000282653100008

  • EID of the result in the Scopus database