Inapproximability for metric embeddings into R^d
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10048584" target="_blank" >RIV/00216208:11320/10:10048584 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Inapproximability for metric embeddings into R^d
Original language description
We consider the problem of computing the smallest possible distortion for embedding of a given $n$-point metric space into $R^d$, where $d$is emph{fixed} (and small). For $d=1$, it was known that approximating the minimum distortion with a factor better than roughly $n^{1/12}$ is NP-hard.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
362
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
—
UT code for WoS article
000282653100008
EID of the result in the Scopus database
—