Fractional total colourings of graphs of high girth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100273" target="_blank" >RIV/00216208:11320/11:10100273 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/11:43898666
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2010.12.005" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2010.12.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2010.12.005" target="_blank" >10.1016/j.jctb.2010.12.005</a>
Alternative languages
Result language
angličtina
Original language name
Fractional total colourings of graphs of high girth
Original language description
We prove that every graph with even maximum degree at least four or with maximum degree three that has a sufficiently large girth has total fractional chromatic number at most the most the maximum degree increased by one which confirms a conjecture of Reed for the considered graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
101
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
383-402
UT code for WoS article
000294972800001
EID of the result in the Scopus database
—