Trestles in the squares of graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962882" target="_blank" >RIV/49777513:23520/21:43962882 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/21:00124670
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0012365X21002454?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X21002454?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112532" target="_blank" >10.1016/j.disc.2021.112532</a>
Alternative languages
Result language
angličtina
Original language name
Trestles in the squares of graphs
Original language description
We show that the square of every connected S(K_{1,4})-free graph satisfying a matching condition has a 2-connected spanning subgraph of maximum degree at most 3. Furthermore, we characterise trees whose square has a 2-connected spanning subgraph of maximum degree at most k. This generalises the results on S(K_{1,3})-free graphs of Henry and Vogler (1985) and Harary and Schwenk (1971), respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
11
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
—
UT code for WoS article
000690796100014
EID of the result in the Scopus database
2-s2.0-85113154134