All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Steadiness of polynomial rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104527" target="_blank" >RIV/00216208:11320/11:10104527 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Steadiness of polynomial rings

  • Original language description

    A module M is said to be small if the functor Hom(M,-) commutes with direct sums and right steady rings are exactly those rings whose small modules are necessary finitely generated. We give several results on steadiness of polynomial rings, namely we prove that polynomials over a right perfect ring such that End_R(S) is finitely generated over its center for every simple module S form a right steady ring iff the set of variables is countable. Moreover, every polynomial ring in uncountably many variablesis non-steady.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra and Discrete Mathematics

  • ISSN

    1726-3255

  • e-ISSN

  • Volume of the periodical

    2010

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    11

  • Pages from-to

    107-117

  • UT code for WoS article

  • EID of the result in the Scopus database