Hyperplane section OP^2_0 of the complex Cayley plane as the homogeneous space F_4/P_4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104555" target="_blank" >RIV/00216208:11320/11:10104555 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hyperplane section OP^2_0 of the complex Cayley plane as the homogeneous space F_4/P_4
Original language description
We prove that the exceptional complex Lie group ${mathrm{F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${mathbb{O}mathbb{P}}^2$. Although the result itself is not new, our proof is elementary and constructive. Weuse an explicit realization of the vector and spin actions of ${mathrm{Spin}}(9,mathbb{C})leq {mathrm{F}_4}$. Moreover, we identify the stabilizer of the ${mathrm{F}_4}$-action as a parabolic subgroup ${mathrm{P}_4}$ (with Levi factor $mathrm{B_3T_1}$) of the complex Lie group ${mathrm{F}_4}$. In the real case we obtain an analogous realization of ${mathrm{F}_4}^{(-20)}/P$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
15
Pages from-to
535-549
UT code for WoS article
—
EID of the result in the Scopus database
—