SPIN STRUCTURES ON COMPACT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50016058" target="_blank" >RIV/62690094:18470/19:50016058 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00031-018-9498-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00031-018-9498-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00031-018-9498-1" target="_blank" >10.1007/s00031-018-9498-1</a>
Alternative languages
Result language
angličtina
Original language name
SPIN STRUCTURES ON COMPACT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
Original language description
We study spin structures on compact simply-connected homogeneous pseudo-Riemannian manifolds (M = G=H; g) of a compact semisimple Lie group G. We classify flag manifolds F = G/H of a compact simple Lie group which are spin. This yields also the classification of all flag manifolds carrying an invariant metaplectic structure. Then we investigate spin structures on principal torus bundles over manifolds F = G/H, i.e., C-spaces, or equivalently simply-connected homogeneous complex manifolds M = G/L of a compact semisimple Lie group G. We study the topology of M and we provide a sufficient and necessary condition for the existence of an (invariant) spin structure, in terms of the Koszul form of F.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
TRANSFORMATION GROUPS
ISSN
1083-4362
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
659-689
UT code for WoS article
000479069800002
EID of the result in the Scopus database
2-s2.0-85055592017