All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reductive homogeneous Lorentzian manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019326" target="_blank" >RIV/62690094:18470/22:50019326 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0926224522000857?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224522000857?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.difgeo.2022.101932" target="_blank" >10.1016/j.difgeo.2022.101932</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reductive homogeneous Lorentzian manifolds

  • Original language description

    We study homogeneous Lorentzian manifolds M = G/L of a connected reductive Lie group Gmodulo a connected reductive subgroup L, under the assumption that M is (almost) G-effective and the isotropy representation is totally reducible. We show that the description of such manifolds reduces to the case of semisimple Lie groups G. Moreover, we prove that such a homogeneous space is reductive. We describe all totally reducible subgroups of the Lorentz group and divide them into three types. The subgroups of Type Iare compact, while the subgroups of Type II and Type III are non-compact. The explicit description of the corresponding homogeneous Lorentzian spaces of Type II and III(under some mild assumption) is given. We also show that the description of Lorentz homogeneous manifolds M = G/L of Type I reduces to the description of subgroups L such that M = G/Lis an admissible manifold, i.e., an effective homogeneous manifold that admits an invariant Lorentzian metric. Whenever the subgroup Lis a maximal subgroup with these properties, we call such a manifold minimal admissible. We classify all minimal admissible homogeneous manifolds G/L of a compact semisimple Lie group Ga nd describe all invariant Lorentzian metrics on them. (C) 2022 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Differential Geometry and its Applications

  • ISSN

    0926-2245

  • e-ISSN

    1872-6984

  • Volume of the periodical

    84

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    "Article Number: 101932"

  • UT code for WoS article

    000838919700001

  • EID of the result in the Scopus database

    2-s2.0-85135533295