All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Boundary Regularity of Shear Thickening Flows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104657" target="_blank" >RIV/00216208:11320/11:10104657 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.springerlink.com/content/721hn83605v3336w/" target="_blank" >http://www.springerlink.com/content/721hn83605v3336w/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-010-0025-y" target="_blank" >10.1007/s00021-010-0025-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Boundary Regularity of Shear Thickening Flows

  • Original language description

    This article is concerned with the global regularity of weak solutions to systems describing the flow of shear thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law ansatz with shear exponent p larger or equal to 2. We show that, if the data of the problem are smooth enough, the solution u of the steady generalized Stokes problem belongs to W1,q for suitable q. We use the method of tangential translations and reconstruct the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results for the steady and unsteady generalized Navier-Stokes problem are also formulated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F06%2F0352" target="_blank" >GA201/06/0352: Incompressible fluids with complex rheology: mathematical analysis, computational simulations and optimization of their flows</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    387-404

  • UT code for WoS article

    000293412200005

  • EID of the result in the Scopus database