Boundary Regularity of Shear Thickening Flows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104657" target="_blank" >RIV/00216208:11320/11:10104657 - isvavai.cz</a>
Result on the web
<a href="http://www.springerlink.com/content/721hn83605v3336w/" target="_blank" >http://www.springerlink.com/content/721hn83605v3336w/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-010-0025-y" target="_blank" >10.1007/s00021-010-0025-y</a>
Alternative languages
Result language
angličtina
Original language name
Boundary Regularity of Shear Thickening Flows
Original language description
This article is concerned with the global regularity of weak solutions to systems describing the flow of shear thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law ansatz with shear exponent p larger or equal to 2. We show that, if the data of the problem are smooth enough, the solution u of the steady generalized Stokes problem belongs to W1,q for suitable q. We use the method of tangential translations and reconstruct the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results for the steady and unsteady generalized Navier-Stokes problem are also formulated.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0352" target="_blank" >GA201/06/0352: Incompressible fluids with complex rheology: mathematical analysis, computational simulations and optimization of their flows</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
387-404
UT code for WoS article
000293412200005
EID of the result in the Scopus database
—