Reachability by paths of bounded curvature in a convex polygon
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10100318" target="_blank" >RIV/00216208:11320/12:10100318 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2011.07.003" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2011.07.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2011.07.003" target="_blank" >10.1016/j.comgeo.2011.07.003</a>
Alternative languages
Result language
angličtina
Original language name
Reachability by paths of bounded curvature in a convex polygon
Original language description
Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most one, and let P be a convex polygon with n vertices. Given a starting configuration (a location and a direction of travel) for B inside P, we characterize the region of all points of P that can be reached by B, and show that it has complexity O(n). We give an O(n2) time algorithm to compute this region. We show that a point is reachable only if it can be reached by a path of type CCSCS, where Cdenotes a unit circle arc and S denotes a line segment.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
1-2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
21-32
UT code for WoS article
000296945500003
EID of the result in the Scopus database
—