Orthogonal basis for spherical monogenics by step two branching
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10104502" target="_blank" >RIV/00216208:11320/12:10104502 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10455-011-9276-y" target="_blank" >http://dx.doi.org/10.1007/s10455-011-9276-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-011-9276-y" target="_blank" >10.1007/s10455-011-9276-y</a>
Alternative languages
Result language
angličtina
Original language name
Orthogonal basis for spherical monogenics by step two branching
Original language description
Spherical monogenics can be regarded as a basic tool for the study of harmonic analysis of the Dirac operator in Euclidean space R^m. They play a similar role as spherical harmonics do in case of harmonic analysis of the Laplace operator on R^m. Fix thedirect sum R^m = R^p x R^q. In this paper we will study the decomposition of the space M_n(R^m;C_m) of spherical monogenics of order n under the action of Spin(p) x Spin(q). As a result we obtain a Spin(p) x Spin(q)-invariant orthonormal basis for M_n(R^m;C_m). In particular, using the construction with p = 2 inductively, this yields a new orthonormal basis for the space M_n(R^m;C_m).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
161-186
UT code for WoS article
000299294500003
EID of the result in the Scopus database
—