Weakly based modules over Dedekind domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287247" target="_blank" >RIV/00216208:11320/14:10287247 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.09.031" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2013.09.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.09.031" target="_blank" >10.1016/j.jalgebra.2013.09.031</a>
Alternative languages
Result language
angličtina
Original language name
Weakly based modules over Dedekind domains
Original language description
We say that a subset X of a left R-module M is weakly independent provided that whenever a(1)x(1) + ... + a(n)x(n) = 0 for pairwise distinct elements x(1), ... , x(n) form X, then none of a(1), ... , a(n) is invertible in R. Weakly independent generatingsets (we call them weak bases) are exactly generating sets minimal with respect to inclusion. The aim of the paper is to characterize modules over Dedekind domains possessing a weak basis. We will characterize them as follows: Let R be a Dedekind domainand let M be a x-generated R-module, for some infinite cardinal x. Then M has a weak basis iff at least one of the following conditions is satisfied: (1) There are two different prime ideals P, Q of R such that dim(R/P) (M/PM) = dim(R/Q) (M/QM) = x; (2)There are a prime ideal P of R and a decomposition M similar or equal to F circle plus N where F is a free module and dim(R/P) (tau N/P tau N) = gen(N); (3) There is a projection of M onto an R-module circle plus(P is an element of Spec(
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
399
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
251-268
UT code for WoS article
000330006200013
EID of the result in the Scopus database
—