Segment representation of a subclass of co-planar graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126241" target="_blank" >RIV/00216208:11320/12:10126241 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2012.01.024" target="_blank" >http://dx.doi.org/10.1016/j.disc.2012.01.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2012.01.024" target="_blank" >10.1016/j.disc.2012.01.024</a>
Alternative languages
Result language
angličtina
Original language name
Segment representation of a subclass of co-planar graphs
Original language description
A graph is a segment graph if its vertices can be mapped to line segments in the plane such that two vertices are adjacent if and only if their corresponding line segments intersect. Kratochvil and Kubena asked the question of whether the complements ofplanar graphs, called co-planar graphs, are segment graphs. We show here that the complements of all partial 2-trees are segment graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
312
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
4
Pages from-to
1815-1818
UT code for WoS article
000303288500027
EID of the result in the Scopus database
—