Singular points of order k of Clarke regular and arbitrary functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127428" target="_blank" >RIV/00216208:11320/12:10127428 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Singular points of order k of Clarke regular and arbitrary functions
Original language description
Let $X$ be a separable Banach space and $f$ a locally Lipschitz real function on $X$. Singular points of order $k$ of $f$ are those points at which the Clarke subdifferential of $f$ is at least $k$-dimensional. We prove that if $f$ is Clarke regu lar, then the set of all singular points of order $k$ of $f$ can be covered by countably many Lipchitz surfaces of codimension $k$. We prove also two results on arbitrary functions, which work with Hadamard directional derivatives and can be considered as generalization of the above result on Clarke regular functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
51-63
UT code for WoS article
—
EID of the result in the Scopus database
—