All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular points of order k of Clarke regular and arbitrary functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127428" target="_blank" >RIV/00216208:11320/12:10127428 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular points of order k of Clarke regular and arbitrary functions

  • Original language description

    Let $X$ be a separable Banach space and $f$ a locally Lipschitz real function on $X$. Singular points of order $k$ of $f$ are those points at which the Clarke subdifferential of $f$ is at least $k$-dimensional. We prove that if $f$ is Clarke regu lar, then the set of all singular points of order $k$ of $f$ can be covered by countably many Lipchitz surfaces of codimension $k$. We prove also two results on arbitrary functions, which work with Hadamard directional derivatives and can be considered as generalization of the above result on Clarke regular functions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    51-63

  • UT code for WoS article

  • EID of the result in the Scopus database