All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189657" target="_blank" >RIV/00216208:11320/13:10189657 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Smallness of Singular Sets of Semiconvex Functions in Separable Banach Spaces

  • Original language description

    Let X be a separable superreflexive Banach space and f be a semiconvex function (with a general modulus) on X. For k epsilon N, let Sigma(k)(f) be the set of points x epsilon X, at which the Clarke subdifferential partial derivative f(x) is at least k-dimensional. Note that Sigma(1)(f) is the set of all points at which f is not Gateaux differentiable. Then Sigma(k)(f) can be covered by countably many Lipschitz surfaces of codimension k which are described by functions, which are differences of two semiconvex functions. If X is separable and superreflexive Banach space which admits an equivalent norm with modulus of smoothness of power type 2 (e.g., if X is a Hilbert space or X = L-p(mu) with 2 {= p), we give, for a fixed modulus w and k epsilon N, a complete characterization of those A subset of X, for which there exists a function f on X which is semiconvex on X with modulus w and A subset of Sigma(k)(f). Namely, A subset of X has this property if and only if A can be covered by count

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Convex Analysis

  • ISSN

    0944-6532

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

    573-598

  • UT code for WoS article

    000322348200015

  • EID of the result in the Scopus database