ABSORBING SUBALGEBRAS, CYCLIC TERMS, AND THE CONSTRAINT SATISFACTION PROBLEM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127443" target="_blank" >RIV/00216208:11320/12:10127443 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2168/LMCS-8(1:07)2012" target="_blank" >http://dx.doi.org/10.2168/LMCS-8(1:07)2012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2168/LMCS-8(1:07)2012" target="_blank" >10.2168/LMCS-8(1:07)2012</a>
Alternative languages
Result language
angličtina
Original language name
ABSORBING SUBALGEBRAS, CYCLIC TERMS, AND THE CONSTRAINT SATISFACTION PROBLEM
Original language description
The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction Problem over a fixed template is solvable in polynomial time if the algebra of polymorphisms associated to the template lies in a Taylor variety, and is NP-complete otherwise. This paper provides two new characterizations of finitely generated Taylor varieties. The first characterization is using absorbing subalgebras and the second one cyclic terms. These new conditions allow us to reprove the conjecture of Bang-Jensen and Hell(proved by the authors) and the characterization of locally finite Taylor varieties using weak near-unanimity terms (proved by McKenzie and Maroti) in an elementary and self-contained way.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP223" target="_blank" >GP201/09/P223: Constraint satisfaction problem and universal algebra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
1-26
UT code for WoS article
000302505000007
EID of the result in the Scopus database
—