Mal'tsev conditions, lack of absorption, and solvability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317519" target="_blank" >RIV/00216208:11320/15:10317519 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00012-015-0338-z" target="_blank" >http://dx.doi.org/10.1007/s00012-015-0338-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-015-0338-z" target="_blank" >10.1007/s00012-015-0338-z</a>
Alternative languages
Result language
angličtina
Original language name
Mal'tsev conditions, lack of absorption, and solvability
Original language description
We provide a new characterization of several Mal'tsev conditions for locally finite varieties using hereditary term properties. We show a particular example of how a lack of absorption causes collapse in the Mal'tsev hierarchy, and point out a connectionbetween solvability and the lack of absorption. As a consequence, we provide a new and conceptually simple proof of a result of Hobby and McKenzie, saying that locally finite varieties with a Taylor term possess a term which is Mal'tsev on blocks of every solvable congruence in every finite algebra in the variety.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
1-2
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
185-206
UT code for WoS article
000358656700011
EID of the result in the Scopus database
2-s2.0-84938423209