Kaplansky classes, finite character and aleph(1)-projectivity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128138" target="_blank" >RIV/00216208:11320/12:10128138 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >http://dx.doi.org/10.1515/FORM.2011.101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >10.1515/FORM.2011.101</a>
Alternative languages
Result language
angličtina
Original language name
Kaplansky classes, finite character and aleph(1)-projectivity
Original language description
Kaplansky classes emerged in the context of Enochs' solution of the Flat Cover Conjecture. Their connection to abstract model theory goes back to Baldwin et al.: a class C of roots of Ext is a Kaplansky class closed under direct limits if and only if thepair (C, {=) is an abstract elementary class (AEC) in the sense of Shelah. We prove that this AEC has finite character in case C = C-perpendicular to' for a class C' of pure-injective modules. In particular, all AECs of roots of Ext over any right noetherian right hereditary ring R have finite character (but the case of general rings remains open). If (C, {=) is an AEC of roots of Ext, then C is known to be a covering class. However, Kaplansky classes need not even be precovering in general: We prove that the class D of all aleph(1)-projective modules (which is equal to the class of all flat Mittag-Leffler modules) is a Kaplansky class for any ring R, but it fails to be precovering in case R is not right perfect, the class (perpendicul
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
1091-1109
UT code for WoS article
000309161800008
EID of the result in the Scopus database
—