All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kaplansky classes, finite character and aleph(1)-projectivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128138" target="_blank" >RIV/00216208:11320/12:10128138 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >http://dx.doi.org/10.1515/FORM.2011.101</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >10.1515/FORM.2011.101</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kaplansky classes, finite character and aleph(1)-projectivity

  • Original language description

    Kaplansky classes emerged in the context of Enochs' solution of the Flat Cover Conjecture. Their connection to abstract model theory goes back to Baldwin et al.: a class C of roots of Ext is a Kaplansky class closed under direct limits if and only if thepair (C, {=) is an abstract elementary class (AEC) in the sense of Shelah. We prove that this AEC has finite character in case C = C-perpendicular to' for a class C' of pure-injective modules. In particular, all AECs of roots of Ext over any right noetherian right hereditary ring R have finite character (but the case of general rings remains open). If (C, {=) is an AEC of roots of Ext, then C is known to be a covering class. However, Kaplansky classes need not even be precovering in general: We prove that the class D of all aleph(1)-projective modules (which is equal to the class of all flat Mittag-Leffler modules) is a Kaplansky class for any ring R, but it fails to be precovering in case R is not right perfect, the class (perpendicul

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forum Mathematicum

  • ISSN

    0933-7741

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    1091-1109

  • UT code for WoS article

    000309161800008

  • EID of the result in the Scopus database