Approximations and locally free modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285166" target="_blank" >RIV/00216208:11320/14:10285166 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1112/blms/bdt069" target="_blank" >http://dx.doi.org/10.1112/blms/bdt069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms/bdt069" target="_blank" >10.1112/blms/bdt069</a>
Alternative languages
Result language
angličtina
Original language name
Approximations and locally free modules
Original language description
For any set of modules S, we prove the existence of precovers (right approximations) for all classes of modules of bounded C-resolution dimension, where C is the class of all S-filtered modules. In contrast, we use infinite-dimensional tilting theory toshow that the class of all locally free modules induced by a non-Sigma-pure-split tilting module is not precovering. Consequently, the class of all locally Baer modules is not precovering for any countable hereditary artin algebra of infinite representation type.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
2014
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
76-90
UT code for WoS article
000330193400008
EID of the result in the Scopus database
—