All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximations and Mittag-Leffler conditions the applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383597" target="_blank" >RIV/00216208:11320/18:10383597 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11856-018-1711-3" target="_blank" >https://doi.org/10.1007/s11856-018-1711-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-018-1711-3" target="_blank" >10.1007/s11856-018-1711-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximations and Mittag-Leffler conditions the applications

  • Original language description

    A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules C, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when C = A, or C is the class of all locally A (ae&lt;currency&gt;omega) -free modules, where A is any class of modules fitting in a cotorsion pair (A, B) such that B is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    226

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    24

  • Pages from-to

    757-780

  • UT code for WoS article

    000437012800008

  • EID of the result in the Scopus database

    2-s2.0-85048301299