Approximations and Mittag-Leffler conditions the applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383597" target="_blank" >RIV/00216208:11320/18:10383597 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11856-018-1711-3" target="_blank" >https://doi.org/10.1007/s11856-018-1711-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-018-1711-3" target="_blank" >10.1007/s11856-018-1711-3</a>
Alternative languages
Result language
angličtina
Original language name
Approximations and Mittag-Leffler conditions the applications
Original language description
A classic result by Bass says that the class of all projective modules is covering if and only if it is closed under direct limits. Enochs extended the if-part by showing that every class of modules C, which is precovering and closed under direct limits, is covering, and asked whether the converse is true. We employ the tools developed in [18] and give a positive answer when C = A, or C is the class of all locally A (ae<currency>omega) -free modules, where A is any class of modules fitting in a cotorsion pair (A, B) such that B is closed under direct limits. This setting includes all cotorsion pairs and classes of locally free modules arising in (infinite-dimensional) tilting theory. We also consider two particular applications: to pure-semisimple rings, and Artin algebras of infinite representation type.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
226
Issue of the periodical within the volume
2
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
24
Pages from-to
757-780
UT code for WoS article
000437012800008
EID of the result in the Scopus database
2-s2.0-85048301299