On the Bend-Number of Planar and Outerplanar Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129982" target="_blank" >RIV/00216208:11320/12:10129982 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-29344-3_39" target="_blank" >http://dx.doi.org/10.1007/978-3-642-29344-3_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-29344-3_39" target="_blank" >10.1007/978-3-642-29344-3_39</a>
Alternative languages
Result language
angličtina
Original language name
On the Bend-Number of Planar and Outerplanar Graphs
Original language description
The bend-number b(G) of a graph G is the minimum k such that G may be represented as the edge intersection graph of a set of grid paths with at most k bends. We confirm a conjecture of Biedl and Stern showing that the maximum bend-number of outerplanar graphs is 2. Moreover we improve the formerly known lower and upper bound for the maximum bend-number of planar graphs from 2 and 5 to 3 and 4, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7256
Issue of the periodical within the volume
April
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
458-469
UT code for WoS article
—
EID of the result in the Scopus database
—