A Dirac theorem for trestles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914948" target="_blank" >RIV/49777513:23520/12:43914948 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2012.03.011" target="_blank" >http://dx.doi.org/10.1016/j.disc.2012.03.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2012.03.011" target="_blank" >10.1016/j.disc.2012.03.011</a>
Alternative languages
Result language
angličtina
Original language name
A Dirac theorem for trestles
Original language description
A k-subtrestle in a graph G is a 2-connected subgraph of G of maximum degree at most k. We prove a lower bound on the order of a largest k- subtrestle of G, in terms of k and the minimum degree of G. A corollary of our result is that every 2-connected graph with n vertices and minimum degree at least 2n/(k + 2) contains a spanning k-subtrestle. This corollary is an extension of Dirac's Theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
312
Issue of the periodical within the volume
12-13
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
2000-2004
UT code for WoS article
—
EID of the result in the Scopus database
—