Characterizing forbidden pairs for rainbow connection in graphs with minimum degree 2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43926836" target="_blank" >RIV/49777513:23520/16:43926836 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2015.10.020" target="_blank" >http://dx.doi.org/10.1016/j.disc.2015.10.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2015.10.020" target="_blank" >10.1016/j.disc.2015.10.020</a>
Alternative languages
Result language
angličtina
Original language name
Characterizing forbidden pairs for rainbow connection in graphs with minimum degree 2
Original language description
A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number rc(G) of G is the minimum number of colors that are needed in order to make G rainbow connected. In this paper, we complete the discussion of pairs (X, Y) of connected graphs for which there is a constant k such that, for every connected (X, Y)-free graph G with minimum degree at least 2, rc(G) is at most diam(G)+k (where diam(G) is the diameter of G), by giving a complete characterization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
339
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1058-1068
UT code for WoS article
000367630800066
EID of the result in the Scopus database
—