Rainbow connection and forbidden subgraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43928493" target="_blank" >RIV/49777513:23520/15:43928493 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0012365X14003215" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0012365X14003215</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2014.08.008" target="_blank" >10.1016/j.disc.2014.08.008</a>
Alternative languages
Result language
angličtina
Original language name
Rainbow connection and forbidden subgraphs
Original language description
A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number rc(G) of G is the minimum number of colors needed to make G rainbow-connected. We consider families F of connected graphs for which there is a constant k such that, for every connected F-free graph G, rc(G)LESS-THAN OR EQUAL TOdiam(G)+k, where diam(G) is the diameter of G. In this paper, we give a complete answer for |F|=1 and |F|=2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
338
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
1706-1713
UT code for WoS article
000358092000008
EID of the result in the Scopus database
—