On forbidden subgraphs and rainbow connection of graphs with minimum degree 2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43923559" target="_blank" >RIV/49777513:23520/15:43923559 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2014.10.006" target="_blank" >http://dx.doi.org/10.1016/j.disc.2014.10.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2014.10.006" target="_blank" >10.1016/j.disc.2014.10.006</a>
Alternative languages
Result language
angličtina
Original language name
On forbidden subgraphs and rainbow connection of graphs with minimum degree 2
Original language description
A connected edge-colored graph $G$ is rainbow-connected if any two distinct vertices of $G$ are connected by a path whose edges have pairwise distinct colors; the rainbow connection number $rc(G)$ of $G$ is the minimum number of colors such that $G$ israinbow-connected. We consider families $cF$ of connected graphs for which there is a constant $k_cF$ such that, for every connected $cF$-free graph $G$ with minimum degree two, $rc(G)leqdiam(G)+k_cF$, where $diam(G)$ is the diameter of $G$. In the paper, we give a complete answer for $|cF|in {1,2}$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
338
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
1-8
UT code for WoS article
000347861600001
EID of the result in the Scopus database
—