All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generating the bounded derived category and perfect ghosts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130578" target="_blank" >RIV/00216208:11320/12:10130578 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1112/blms/bdr093" target="_blank" >http://dx.doi.org/10.1112/blms/bdr093</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms/bdr093" target="_blank" >10.1112/blms/bdr093</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generating the bounded derived category and perfect ghosts

  • Original language description

    We show, for a wide class of abelian categories relevant in representation theory and algebraic geometry, that the bounded derived categories have no non-trivial strongly finitely generated thick subcategories containing all perfect complexes. In order to do so, we prove a strong converse of the Ghost Lemma for bounded derived categories.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP201%2F10%2FP084" target="_blank" >GPP201/10/P084: Modern homological algebra and geometry in representation theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    285-298

  • UT code for WoS article

    000302016900006

  • EID of the result in the Scopus database