Generating the bounded derived category and perfect ghosts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130578" target="_blank" >RIV/00216208:11320/12:10130578 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1112/blms/bdr093" target="_blank" >http://dx.doi.org/10.1112/blms/bdr093</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms/bdr093" target="_blank" >10.1112/blms/bdr093</a>
Alternative languages
Result language
angličtina
Original language name
Generating the bounded derived category and perfect ghosts
Original language description
We show, for a wide class of abelian categories relevant in representation theory and algebraic geometry, that the bounded derived categories have no non-trivial strongly finitely generated thick subcategories containing all perfect complexes. In order to do so, we prove a strong converse of the Ghost Lemma for bounded derived categories.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP201%2F10%2FP084" target="_blank" >GPP201/10/P084: Modern homological algebra and geometry in representation theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
285-298
UT code for WoS article
000302016900006
EID of the result in the Scopus database
—