Composition of q-quasiconformal mappings and functions in Orlicz-Sobolev spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10190716" target="_blank" >RIV/00216208:11320/12:10190716 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Composition of q-quasiconformal mappings and functions in Orlicz-Sobolev spaces
Original language description
Let $Omegasubsetrn$, $qgeq n$ and $alphageq 0$ or $1<qleq n$ and $alphaleq 0$. We prove that the composition of $q$-quasiconfomal mapping $f$ and function $uin WL^qlog^{alpha}L_{loc}(f(Omega))$ satisfies $ucirc fin WL^qlog^{alpha}L_{loc}(Omega)$. Moreover each homeomorphism $f$ which introduces continuous composition operator from $WL^qlog^{alpha}L$ to $WL^qlog^{alpha}L$ is necessarily a $q$-quasiconformal mapping. As a new tool we prove a Lebesgue density type theorem for Orliczspaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Illinois Journal of Mathematics
ISSN
0019-2082
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
56
Country of publishing house
IN - INDIA
Number of pages
24
Pages from-to
931-955
UT code for WoS article
—
EID of the result in the Scopus database
—