Completion and Samuel compactification of nearness and uniform frames
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10306930" target="_blank" >RIV/00216208:11320/12:10306930 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/PM/1908" target="_blank" >http://dx.doi.org/10.4171/PM/1908</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/PM/1908" target="_blank" >10.4171/PM/1908</a>
Alternative languages
Result language
angličtina
Original language name
Completion and Samuel compactification of nearness and uniform frames
Original language description
It is shown that the familiar description of the completion of a uniform frame in terms of its Samuel compactification can be extended to arbitrary nearness frames. This is achieved by means of the following new notion, a variant of compactness, for regular frames: such a frame will be called near-compact if it is complete in some totally bounded nearness. This leads to a natural concept of the Samuel near-compactification for arbitrary nearness frames which is then shown to play exactly the same role in the general setting which the Samuel compactification plays for uniform frames.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Portugaliae Mathematica
ISSN
0032-5155
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
2
Country of publishing house
PT - PORTUGAL
Number of pages
14
Pages from-to
113-126
UT code for WoS article
000309088300002
EID of the result in the Scopus database
2-s2.0-84877104275