A family of Alltop Functions that are EA-Inequivalent to the Cubic Function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189063" target="_blank" >RIV/00216208:11320/13:10189063 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A family of Alltop Functions that are EA-Inequivalent to the Cubic Function
Original language description
Let F be a field. A transformation f of F is called planar if f(a+x) - f(x) is a permutation of F for every nonzero a. The transformation f is called an Alltop function (or a planar difference function) if f(a+x) -f(x) is planar for every nonzero a.The paper describes a new family of Alltop functions on fields of order that is a (2r)th power of a prime p, p at least 5,where 3 does not divide q+1, where q is the rth power of p.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Communications
ISSN
0090-6778
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
4722-4727
UT code for WoS article
—
EID of the result in the Scopus database
—