On Primitives and Conjugate Harmonic Pairs in Hermitian Clifford Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189988" target="_blank" >RIV/00216208:11320/13:10189988 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11785-012-0278-y" target="_blank" >http://dx.doi.org/10.1007/s11785-012-0278-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11785-012-0278-y" target="_blank" >10.1007/s11785-012-0278-y</a>
Alternative languages
Result language
angličtina
Original language name
On Primitives and Conjugate Harmonic Pairs in Hermitian Clifford Analysis
Original language description
The notion of a conjugate harmonic pair in the context of Hermitian Clifford analysis is introduced as a pair of specific harmonic functions summing up to a Hermitian monogenic function in an open region of . Hermitian monogenic functions are special monogenic functions, which are at the core of so-called Clifford analyis, a straightforward generalization to higher dimension of the holomorphic functions in the complex plane. Under certain geometric conditions on the conjugate harmonic to a given specific harmonic is explicitly constructed and the potential or primitive of a Hermitian monogenic function is determined.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Analysis and Operator Theory
ISSN
1661-8254
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
1583-1607
UT code for WoS article
000324635300010
EID of the result in the Scopus database
—