The Cauchy-Kovalevskaya extension theorem in Hermitian Clifford analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104470" target="_blank" >RIV/00216208:11320/11:10104470 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Cauchy-Kovalevskaya extension theorem in Hermitian Clifford analysis
Original language description
Hermitian Clifford analysis is a higher dimensional function theory centered around the simultaneous null solutions, called Hermitian monogenic functions, of two Hermitian conjugate complex Dirac operators. As an essential step towards the construction of an orthogonal basis of Hermitian monogenic polynomials, in this paper a Cauchy-Kovalevskaya extension theorem is established for such polynomials. The minimal number of initial polynomials needed to obtain a unique Hermitian monogenic extension is determined, along with the compatibility conditions they have to satisfy. The Cauchy-Kovalevskaya extension principle then allows for a dimensional analysis of the spaces of spherical Hermitian monogenics, i.e. homogeneous Hermitian monogenic polynomials. Aversion of this extension theorem for specific real-analytic functions is also obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
381
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
649-660
UT code for WoS article
000290972700018
EID of the result in the Scopus database
—